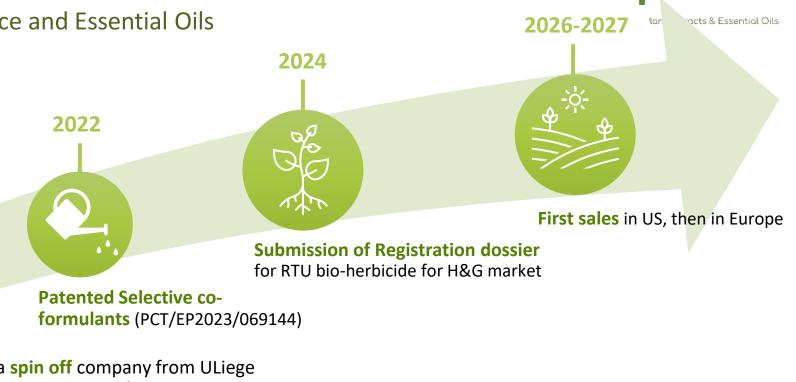


### Agronomical Plant Extracts & Essential Oils


Developing sustainable Agriculture,

Putting Science and Agronomy at the heart of our activities

### Mission

Shifting towards sustainable agriculture and gardening by bringing innovative bio-pesticides based on Science and Essential Oils

2021





2018

Creation of APEO, a **spin off** company from ULiege **secured** from private investors and grants

Patented natural Formulation (patent# WO2019238948A1)

Selection of **Essential oils** for their fungicidal and herbicidal properties

Company Information

## APEO Team Who/Background





A management combining Science and Business



#### **Arnaud Malerbe, CEO**

25+ years managing business development teams and PMI in biosolutions for agriculture. International experience: Mexico, Brasil, Spain, Haiti, Europe, South Africa and USA



Pr. Haïssam Jijakli, co-founder & CSO

33 years' experience in biocontrol Full Professor at ULiège/Gembloux, Phytopathology lab, Creation of 4 Spin-Offs and 10 patents



Simon Dal Maso, co-founder & Technical director

8 years experiences Accelerated Management Program/Solvay Business School 2018

### The dedicated team and the right support for our stage of development

Experienced managers in the key functions and external support :

- Regulatory
- Technical development
- Supply and ops
- Business development
- Finance and administration



Dynamic young and hybrid R&D team (APEO & ULiège researchers and technicians)

All committed with the APEO Values and project



CONFIDENTIAL



## From research to first development



- More herbicide-resistance of weeds
- Retailer and consumer reluctance to chemical residues and public concern for environmental safety
- Limitation and withdrawal of authorized active ingredients (Glyphosate, Diquat,...)
- Development of novel practices (e.a. Mechanical weeds killing) or products (Pelargonic acid)

# Pre-selection considering plant protection market and EO market

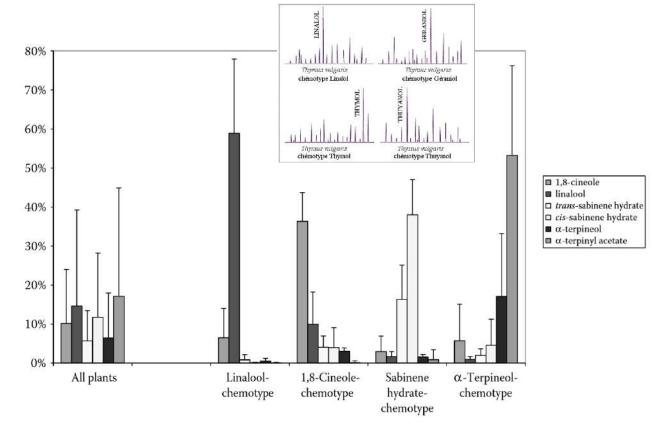


 Among 3000 EOs, pre-selection of 91 EOs for fungicidal and herbicidal activities based on :

- Literature
- Composition
- Majority of the chemical families (Terpens, phenol, alcohol)
- OCost
- Availability

# Pre-selection considering plant protection market and EO market




Agronomical Plant Extracts & Essential Oils

### Chemotype

Chemotype = intraspecific variation Chemotype of *Thymus vulgaris* 



Selection of our suppliers according to the right chemotype and its stable composition



Source graph: Baser, K. H. C., & Buchbauer, G. (2015). Sources of essential oils. Handbook of Essential Oils: Science, Technology, and Applications, Second Edition, p.52. https://doi.org/10.1201/b19393

# Selection under greenhouse conditions



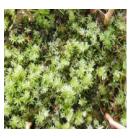
#### Preselection of 22 EOs for herbicidal action and test on:

- Monocotyledons: grass (Festuca 70%, Lolium 30%)





- Dicototyledons : *Urtica dioica, Chenopodium, Papaver, Trifolium incarnatum* 










- Bryophyte



- Pteridophyte



# Selection under greenhouse conditions



#### Activity against

|     | Type of major<br>peak | Monocotyledon | Dicotyledon | Mosses        | Horsetail     |
|-----|-----------------------|---------------|-------------|---------------|---------------|
| EO1 | Aromatic              | +++           | ++++        | ++++          | ++++          |
| EO2 | Aromatic              | ++++          | ++++        | undertermined | undertermined |
| E03 | Terpenic              | ++++          | +           | undertermined | undertermined |



Efficacy of EO1



EO2



EO3



Untreated



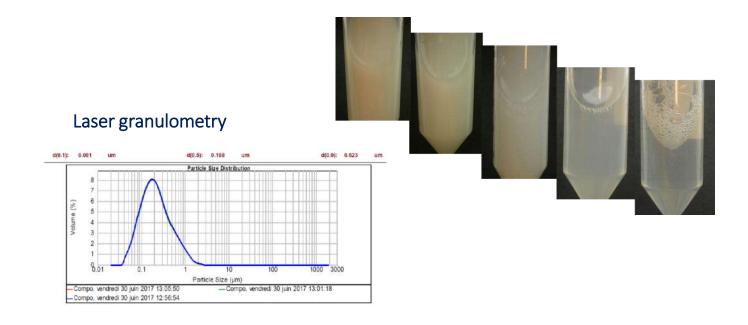
Untreated



Efficacy of EO1

## Importance of the formulation

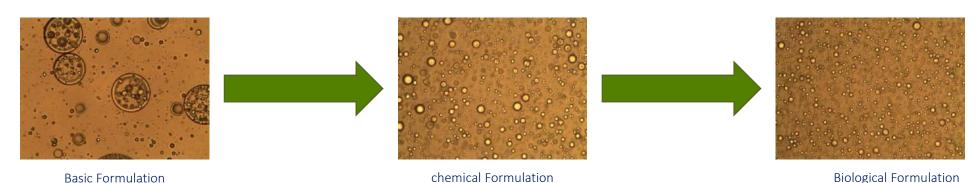



- Influences the modes of action
- Protects the EOs against the environment
- Influences the stability

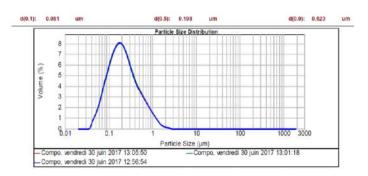
## And it strongly affects the efficacy

### Formulation for stable emulsion




| Туре           | Droplet size | appearence   | Stability      |
|----------------|--------------|--------------|----------------|
| Marco emulsion | 2-20μm       | Milky white  | Instable       |
| Mini emulsion  | 0.1-0.3μm    | Bluish white | Several week   |
| Micro emulsion | <0.1µm       | translucent  | Several months |

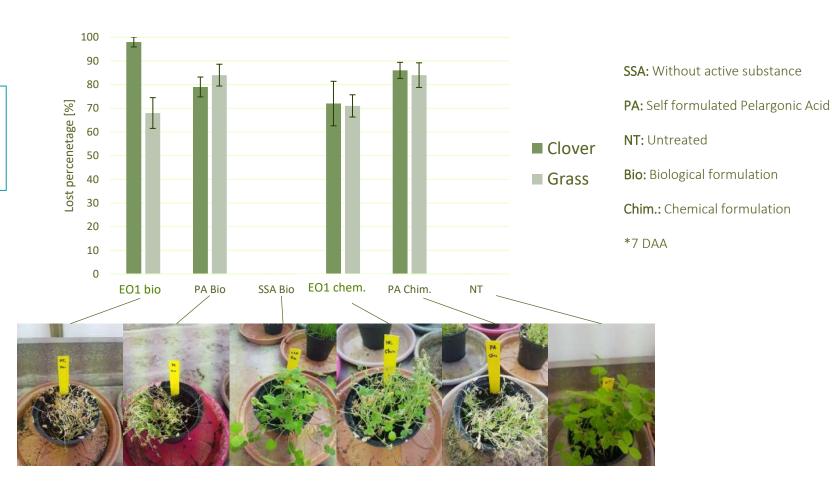



# Formulation from chemical to biological adjuvants



#### Microscopy




#### Laser granulometry



# Formulation from chemical to biological adjuvants



Efficacy on clover and grass



# Improvement and validation of the biological formulation with efficacy trials at different scales







Patented formulation





# From development to first products

## Characteristics of EO1 - Marketing



- ✓ EO1 is a unique novel biosourced biocontrol herbicide active ingredient based on essential oil
- ✓ As such, EO1 has a general positive perception form the public and essential oils are also known in other positive applications (medical, para-medical, cosmetic,...)
- ✓ RTU (Ready to use) and 5 x concentrated formulations are fully from natural organic ingredients
- ✓ PLEASANT ODOR
- ✓ Fully, steadily biodegradable
- √ (Will be) OMRI certified and certified as biocontrol
  - ✓ All ingredients are OMRI certified

# Efficacy trials under field conditions 2019

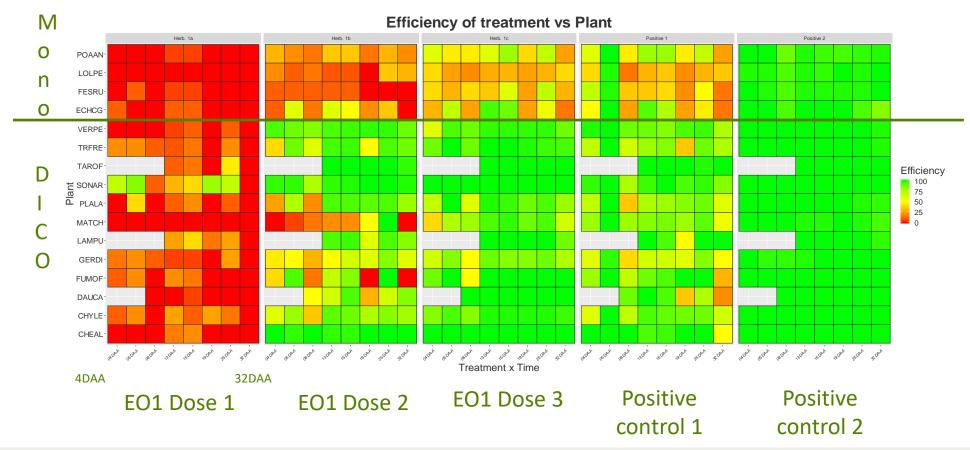


June 2019 in Belgium

Sown weeds in fields (4 monocotyledons and 12 dicotyledons)

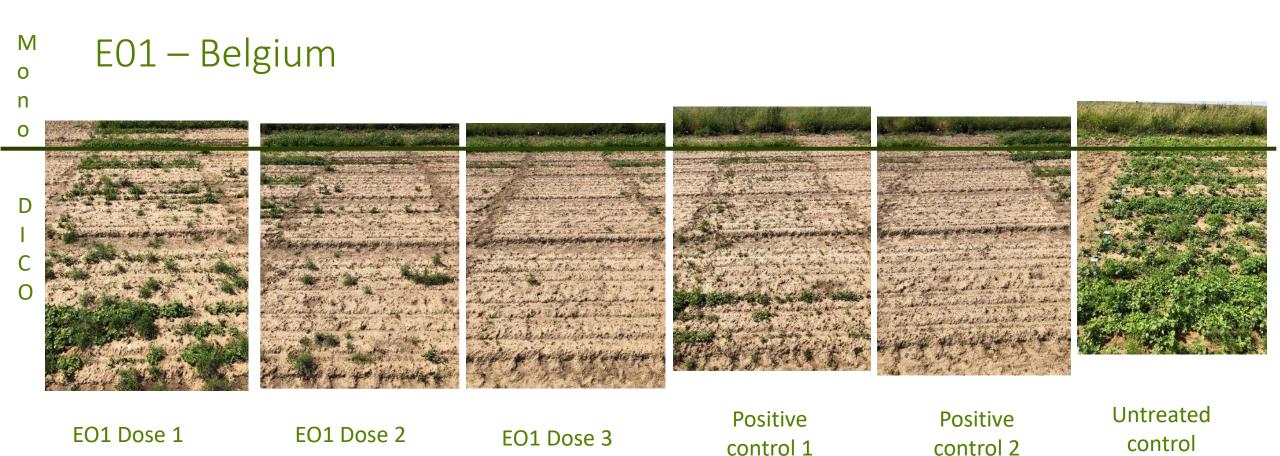
Application of EO1 with final formulation

2 applications (10 days between applications)


4 replicates



# Efficacy trials under field conditions 2019




### EO1 – Belgium



# Efficacy trials under field conditions 2019





# Characteristics of EO1 – EFFICACY on permeable soil



Belgium in 2021 Sown weeds in fields

#### **APEO**



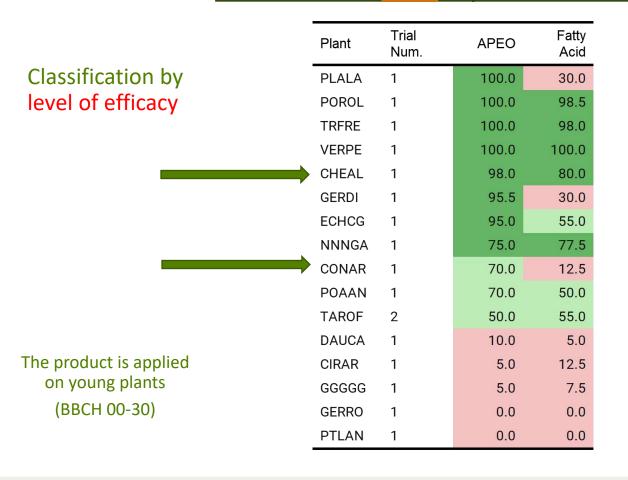
### **Fatty Acid**



# Characteristics of EO1 – EFFICACY after <u>5 years of GEP trials</u>



- ✓ EO1 has a **broader and higher global efficacy against DICOT** than products based on Pelargonic Acid (AP)
  - ✓ EO1 has a higher efficacy on 29/40 species of DICOT
- ✓ EO1 has a global similar efficacy against MONOCOT than products based on AP
  - ✓ EO1 has a higher efficacy on 4/7 species of MONOCOT
- ✓ EO1 has a global similar activity in comparison with US market reference products based on
  - √ Fatty acids + hydrazide maleic (chemical)
- ✓ Residual activity
  - ✓ better than Pelargonic Acid
- ✓ Germicidal action
  - ✓ No regrowth of seeds produced by the treated plant


## Characteristics of EO1 – EFFICACY on permeable soil QDE

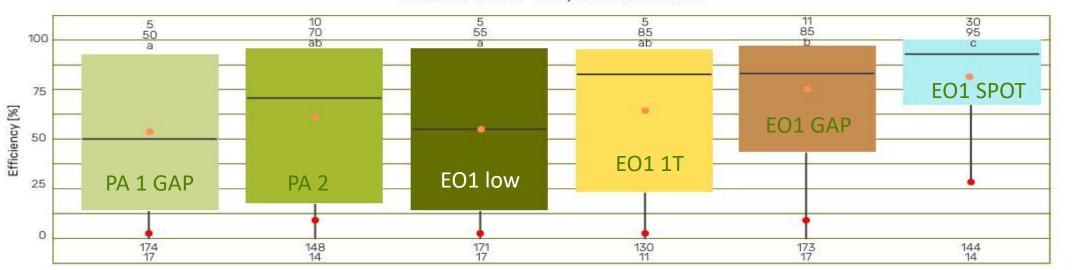
Permeable soil – 21-25 Days after treatment

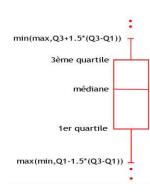
Aaronomical Plant Extracts & Essential Oils

|                | Plant | Trial<br>Num. | APEO  | Fatty<br>Acid |
|----------------|-------|---------------|-------|---------------|
|                | GERRO | 1             | 100.0 | 12.5          |
|                | LAMPU | 1             | 100.0 | 12.5          |
|                | MATCH | 3             | 100.0 | 75.0          |
|                | STEME | 1             | 100.0 | 15.0          |
|                | THLAR | 1             | 100.0 | 12.5          |
|                | VERPE | 1             | 100.0 | 100.0         |
|                | GERDI | 2             | 99.5  | 75.0          |
|                | POROL | 2             | 99.0  | 90.0          |
|                | PLALA | 1             | 97.5  | 40.0          |
|                | TRFRE | 2             | 94.0  | 52.5          |
|                | SETVI | 1             | 92.5  | 87.5          |
|                | CONAR | 1             | 80.0  | 22.5          |
|                | GLNPU | 1             | 80.0  | 17.5          |
|                | MATIN | 1             | 75.0  | 25.0          |
|                | ECHCG | 2             | 75.0  | 35.0          |
|                | POAAN | 4             | 72.5  | 62.5          |
|                | DAUCA | 1             | 60.0  | 30.0          |
|                | NNNGA | 2             | 55.0  | 70.0          |
|                | LOLPE | 1             | 50.0  | 15.0          |
|                | CHEAL | 3             | 30.0  | 35.0          |
|                | HOLMO | 1             | 30.0  | 10.0          |
|                | EPIAD | 1             | 20.0  | 0.0           |
|                | PTLAN | 1             | 17.5  | 17.5          |
| ILY CONFIDENTI | TAROF | 3             | 12.5  | 10.0          |

Permeable soil – 61-70 Days after treatment




APEO copyright


### Efficacy Dicots all surfaces 3 years BBCH 30

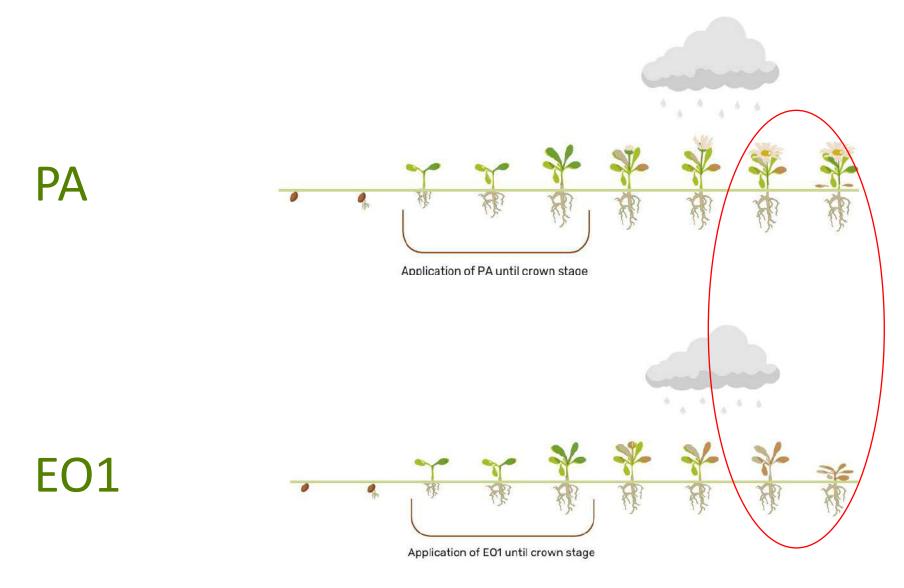


#### All surfaces 3 years BBCH 30

#### BoxPlot on Dico at 21-30 days after first treatment






### Efficacy, permeable soil, 3 years Dicots BBCH30





# Efficacy benchmark EO1 vs PA





# Characteristics of EO1 – EFFICACY on permeable soil



Germany in 2021 Natural weeds

#### **APEO**



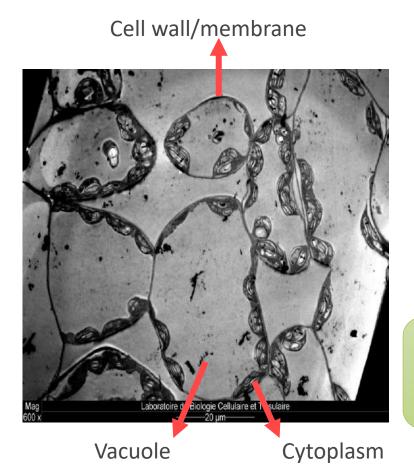
### **Fatty Acid**



### Modes of Action of EO1



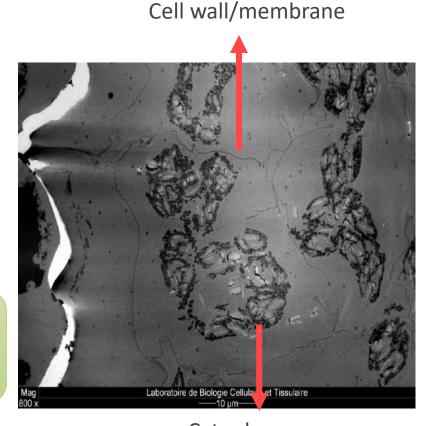
#### Contact


Multisite actions and more modes of actions than AP

No impact on germination if sowing few days after application

## Characteristics of APEO EO1 – MODES OF ACTION

# Aproportical Plant Extracts & Essential Oils


### Effect on plant cells



Normal plant cell

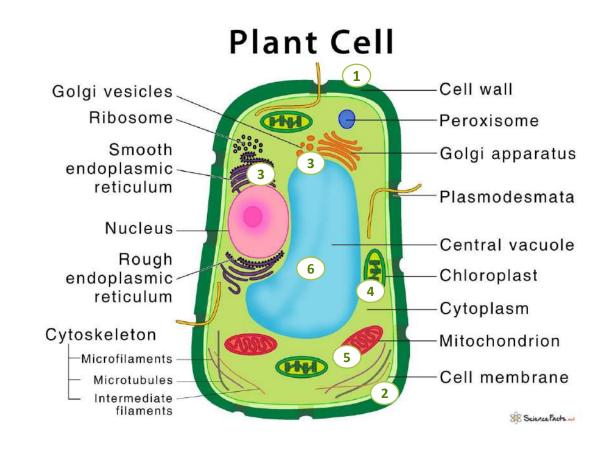
Contact

No impact on germination if sowing few days after application



Effect on roots




Cytoplasm
Plant cell after application of APEO EO1

## Characteristics of APEO EO1 – MODES OF ACTION



### Multisite effect

- 1. Inhibition of membrane cell synthesis
- 2. Alteration of membrane proteins,
- Destabilization of lipid organization and electrolyte leakage
- 4. Destabilization of protein synthesis
- 5. Inhibition of photosynthesis (Chloroplast)
- 6. Inhibition of cellular respiration
- 7. Total disappearance of the vacuole



### Conclusions for bioherbicides



### • APEO E01

- ✓ RTU formulation for H&G, water based
- ✓ Ongoing submission of regisration dossier
- ✓ Ongoing distributorship investigation

## RTU herbicide by spraying application



### • **APEO E04**

- ✓ One formulation for professional use under development
- ✓ Non-selective weed control
- ✓ Potato leaf kill
- √ Vines shoot control

#### Suckering test – France 2021







Untreated

# Perspectives for bioherbicides



| Code     | Market | USES                                                       | Formulation  | First<br>Sales |              |
|----------|--------|------------------------------------------------------------|--------------|----------------|--------------|
| APEO EO1 | H&G    | Non-selective Herbicide on permeable an non- permable soil | RTU          | 2026           | - Herbicides |
| APEO EO2 | H&G    | Non-selective Herbicide on permeable an non- permable soil | Concentrated | 2027           | Tierbicides  |
| APEO EO3 | H&G    | Algicide on semi and non-permeable soil/material           | RTU          | 2027           | Biocide      |
| APEO EO4 | PRO    | Non-selective Herbicide Grapes, Fruit trees, Potatoes      | Concentrated | 2028           | ĺ            |
| APEO EO5 | H&G    | Selective Herbicide on permeable an non- permable soil     | RTU          | 2028           | – Herbicides |
| APEO EO6 | H&G    | Selective Herbicide on permeable an non- permable soil     | Concentrated | 2028           | Herbicides   |
| APEO EO7 | PRO    | Selective Herbicide Cereals                                | Concentrated | 2030           | IJ           |



# From research to first biofungicide development



- Fungi are responsible of yield decrease worldwide
- Chemical fungicide-resistance of fungal populations
- Public is concerned about human health and environmental pollution
- Biofungicides is one of the most dynamic market due to no residue and resistance strategy
- Difficult to control fungal diseases without fungicides

# Pre-selection considering plant protection market and EO market



 Among 3000 EOs, pre-selection of 91 EOs for fungicidal and herbicidal activities based on :

- Literature
- Composition
- Majority of the chemical families (Terpens, phenol, alcohol)
- OCost
- Availability

## Pathosystem selection



| Cultures        | Pathogens                           |  |  |
|-----------------|-------------------------------------|--|--|
| Wheat           | Septoria tritici                    |  |  |
|                 | Puccinia striiformis                |  |  |
|                 | Fusarium graminearum / F culmorum   |  |  |
| Sugar Beet      | Cercospora beticola                 |  |  |
|                 | Erysipahe betae                     |  |  |
|                 | Rhizoctonia solani                  |  |  |
| Potato          | Phytophthora infestans              |  |  |
|                 | Erwinia carotovora/ E. atrospetica. |  |  |
| Apple (tree)    | Venturia inaequalis                 |  |  |
| Apple and Pears | Botrytis cinerea                    |  |  |
|                 | Penicillium expansum                |  |  |
|                 | Gloesporium perennans               |  |  |
| Strawberry      | Xanthomonas fragariae               |  |  |
|                 | Podosphaera aphanis                 |  |  |
|                 | Botrytis cinerea                    |  |  |

| Cultures | Pathogens                     |  |  |
|----------|-------------------------------|--|--|
| Bean     | Colletotrichum lindemuthianum |  |  |
| Vineyard | Plasmopara viticola (mildiou) |  |  |
|          | Uncinula necator (oïdium)     |  |  |
| Soils    | Pythium ultimum               |  |  |

## In vitro screening of best EOs





- 92 extracts (emulsion)
- 2 [EOs]
- =184 objects/pathogen \* 8 reps
- =36 plates/pathogen



- •Measure of OD /24 h
  - •120h
- •Measure of OD /2 h
  - •24h

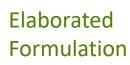
# In vitro screening of best EOs





# Phytotoxicity screening

Arrangical Plant Extracts & Essential Oils


- Importance of the formulation
  - Concentration of EOs
  - Formulation

**Basic Formulation** 

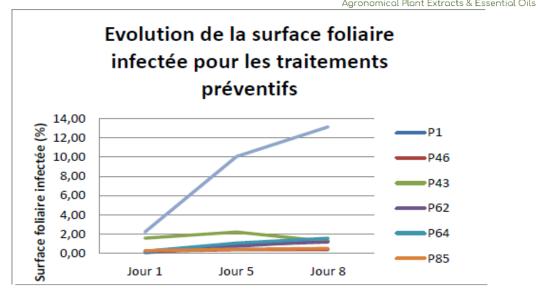




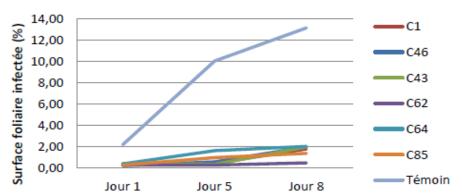












## In vivo screening of best Eos on sugar beet



- Set up
  - Preventive treatment
    - 2-3 Hours before inoculation
    - By spraying EOs on plants
  - Curative treatments
    - 24 hours after inoculation
    - By spraying EOs on plants



Evolution de la surface foliaire infectée pour les traitements curatifs



## In vivo screening of best Eos on strawberry



- Set up
  - Curative treatments
    - After natural inoculation
    - By 2 successive spraying treatments with 1 week interval



Control

1rst treatment



2nd treatment



## In vivo screening of best EOs

| Plant        | Pathogen                                 | Efficacy   |
|--------------|------------------------------------------|------------|
| Sugar beet   | Cercospora beticola                      | <b>©</b> © |
|              | Erysiphae betae                          | ©©         |
|              | Rhizoctonia solani                       | ☺          |
| Potato       | Phytophthora infestans                   | ◎ (◎)      |
| Apple( tree) | Venturia inaequalis                      | ©©         |
| Strawberries | Podosphaera aphanis                      | ©©         |
|              | Xanthomonas fragariae                    | ☺          |
| Apple-Pear   | Botrytis cinerea                         | ⊗(©)       |
|              | Penicillium expansum                     | ⊗(©)       |
|              | Gloesporium perennans                    | ⊕(◎)       |
| Wheat        | S. tritici, P. striiformis. Fusarium sp. | <b>(2)</b> |
| Soil         | P. Ultimum                               | ©©         |
|              |                                          |            |

From research to first biofungicide development



**Undergoing Post-doc** 





**Undergoing PhD** 

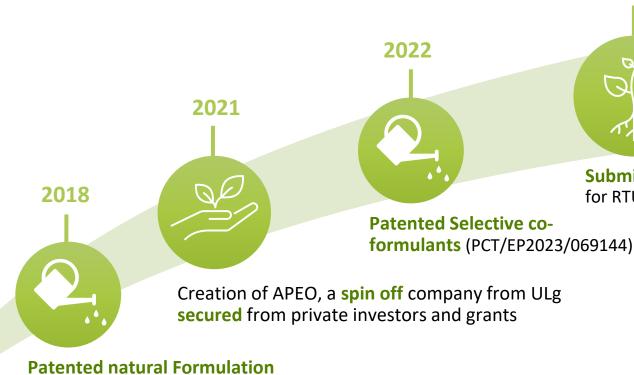


**Undergoing PhD** 



ALLO COPYLISHE

PhD starting in Sept 2024


# Perspectives for biofungicides



|           |        |                                                            |              | , J            |                              |
|-----------|--------|------------------------------------------------------------|--------------|----------------|------------------------------|
| Code      | Market | USES                                                       | Formulation  | First<br>Sales |                              |
| APEO EO1  | H&G    | Non-selective Herbicide on permeable an non- permable soil | RTU          | 2026           | - Herbicides                 |
| APEO EO2  | H&G    | Non-selective Herbicide on permeable an non- permable soil | Concentrated | 2027           | Tierbiciaes                  |
| APEO EO3  | H&G    | Algicide on semi and non-permeable soil/material           | RTU          | 2027           | <b>]</b> Biocide             |
| APEO EO4  | PRO    | Non-selective Herbicide Grapes, Fruit trees, Potatoes      | Concentrated | 2028           | ĺ                            |
| APEO EO5  | H&G    | Selective Herbicide on permeable an non- permable soil     | RTU          | 2028           | <ul><li>Herbicides</li></ul> |
| APEO EO6  | H&G    | Selective Herbicide on permeable an non- permable soil     | Concentrated | 2028           | Herbicides                   |
| APEO EO7  | PRO    | Selective Herbicide Cereals                                | Concentrated | 2030           |                              |
| APEO EO8  | PRO    | Fungicide against Potato mildew                            | Concentrated | 2029           | ]                            |
| APEO EO9  | PRO    | Fungicide against Apple scab                               | Concentrated | 2029           | - Fungicides                 |
| APEO EO10 | PRO    | Fungicide against Septoriose on wheat                      | Concentrated | 2030           |                              |
| APEO EO11 | PRO    | Fungicide against Cercospora leaf spot on sugar beet       | Concentrated | 2030           |                              |

# Thank you for your attention





**Submission of Registration dossier** for RTU bio-herbicide for H&G market

)-

Website

2024

Follow us

apeosolutions.com



APEO solutions

LinkedIn

Selection of **Essential oils** for their fungicidal and herbicidal properties

(patent# WO2019238948A1)

2011